Isoflurane late preconditioning against myocardial stunning is associated with enhanced antioxidant defenses

    loading  Checking for direct PDF access through Ovid

Abstract

Background:

We tested the hypothesis that an upregulation of antioxidant proteins [Cu-Zn superoxide dismutase (SOD), Mn SOD, catalase, glutathione peroxidase, and glutathione peroxidase] plays a role in the delayed protection against myocardial stunning produced by isoflurane preconditioning (ISOPC). Findings were compared with late ischemic PC (IPC).

Methods:

Fourteen mongrel dogs were chronically instrumented to measure coronary blood flow and myocardial wall thickening (WT) in conscious state. In Group 1, dogs underwent IPC, induced by a 10-min coronary artery occlusion (CAO); after 24 h of reperfusion, they were subjected to a second 10-min ischemia CAO-reperfusion. In Group 2 (ISOPC), dogs inhaled one minimum alveolar concentration (MAC) ISO (1.4% in O2) for 60 min, allowed to recover for 24 h, and then subjected to CAO ischemia-reperfusion. Recovery of WT following the initial 10-min CAO in Group 1 served as control response for both ISOPC and IPC. Expression and activity of antioxidant proteins were measured using Western blotting and spectrophotometric techniques, respectively.

Results:

Two to three hours of reperfusion were required for recovery of WT following either ISOPC or IPC; in contrast, without PC, WT remained markedly reduced (30% below baseline) at this time point and required more than 6 h of reperfusion for recovery. Neither IPC nor ISOPC affected expression of Cu-Zn SOD, Mn SOD, or catalase. However, ISOPC increased activity of Mn SOD (+40%), catalase (+39%), glutathione peroxidase (+37%), and glutathione reductase (+93%) (P < 0.05); IPC had similar effects.

Conclusion:

ISOPC had powerful, delayed anti-stunning effect that was associated with an enhancement of endogenous antioxidant defenses.

Related Topics

    loading  Loading Related Articles