Effect of 4-Aminopyridine on Genioglossus Muscle Activity during Sleep in Healthy Adults

    loading  Checking for direct PDF access through Ovid

Abstract

Rationale:

The reduction in upper airway muscle activity from wakefulness to sleep plays a key role in the development of obstructive sleep apnea. Potassium (K+) channels have been recently identified as the downstream mechanisms through which hypoglossal motoneuron membrane excitability is reduced both in non-rapid eye movement (NREM) sleep and REM sleep. In animal models, the administration of 4-aminopyridine (4-AP), a voltage-gated K+ channel blocker, increased genioglossus activity during wakefulness and across all sleep stages.

Objectives:

We tested the hypothesis that administration of a single dose of 4-AP 10 mg extended release would increase genioglossus activity (electromyography of the genioglossus muscle [EMGGG]) during wakefulness and sleep, and thereby decrease pharyngeal collapsibility.

Methods:

We performed a randomized controlled crossover proof-of-concept trial in 10 healthy participants. Participants received active treatment or placebo in randomized order 3 hours before bedtime in the physiology laboratory.

Results:

EMGGG during wakefulness and NREM sleep and upper airway collapsibility measured during NREM sleep were unchanged between placebo and 4-AP nights. Tonic but not phasic EMGGG during REM sleep was higher on the 4-AP night when measured as a percentage of maximal voluntary activation (median [interquartile range] 0.3 [0.5] on placebo vs. 0.8 [1.9] %max on 4 AP; P = 0.04), but not when measured in μV or as a percentage of wakefulness value.

Conclusions:

A single dose of 4-AP 10 mg extended release showed only a small increase in tonic EMGGG during REM sleep in this group of healthy subjects. We speculate that a higher dose of 4-AP may further increase EMGGG. However, given the potentially severe, dose-related adverse effects of this drug, including seizures, the administration of 4-AP does not appear to be an effective strategy to increase genioglossus activity during sleep in humans.

Conclusions:

Clinical Trial registered with clinicaltrials.gov (NCT02656160).

Related Topics

    loading  Loading Related Articles