FoxM1 inhibition enhances chemosensitivity of docetaxel-resistant A549 cells to docetaxel via activation of JNK/mitochondrial pathway

    loading  Checking for direct PDF access through Ovid

Abstract

Docetaxel is recommended as a second-line chemotherapy agent for the non-small-cell lung cancer (NSCLC); however, drug resistance greatly limits its efficiency. Forkhead box M1 (FoxM1), an oncogenic transcription factor, is believed to be involved in the chemoresistance of various human cancers; whereas the association of FoxM1 with acquired docetaxel-resistance in NSCLC remains unclear. In the present study, we investigated the involvement of FoxM1 in the docetaxel-resistant human lung adenocarcinoma A549 cells (A549/DTX). Our results showed that FoxM1 expression was significantly increased in the A549/DTX cells compared with that in the parental A549 cells. FoxM1 siRNA silencing promoted the cytotoxic and pro-apoptotic effect of docetaxel in A549/DTX cells, which was possibly mediated through inducing the activation of c-Jun N-terminal kinases/mitochondrial signaling pathway. Our results suggest a critical role of FoxM1 in docetaxel-resistance of the A549 cells and form the basis for the development of combined therapy of docetaxel and FoxM1 depletion in treating NSCLC.

Related Topics

    loading  Loading Related Articles