Analysis of Vibroarthrographic Signals with Features Related to Signal Variability and Radial-Basis Functions

    loading  Checking for direct PDF access through Ovid

Abstract

Knee-joint sounds or vibroarthrographic (VAG) signals contain diagnostic information related to the roughness, softening, breakdown, or the state of lubrication of the articular cartilage surfaces. Objective analysis of VAG signals provides features for pattern analysis, classification, and noninvasive diagnosis of knee-joint pathology of various types. We propose parameters related to signal variability for the analysis of VAG signals, including an adaptive turns count and the variance of the mean-squared value computed during extension, flexion, and a full swing cycle of the leg, for the purpose of classification as normal or abnormal, that is, screening. With a database of 89 VAG signals, screening efficiency of up to 0.8570 was achieved, in terms of the area under the receiver operating characteristics curve, using a neural network classifier based on radial-basis functions, with all of the six proposed features. Using techniques for feature selection, the turns counts for the flexion and extension parts of the VAG signals were chosen as the top two features, leading to an improved screening efficiency of 0.9174. The proposed methods could lead to objective criteria for improved selection of patients for clinical procedures and reduce healthcare costs.

Related Topics

    loading  Loading Related Articles