Giant Shoot Apical Meristems in Cacti Have Ordinary Leaf Primordia but Altered Phyllotaxy and Shoot Diameter

    loading  Checking for direct PDF access through Ovid

Abstract

Background and Aims

Shoot apical meristems (SAMs) in most seed plants are quite uniform in size and zonation, and molecular genetic studies of Arabidopsis and other model plants are revealing details of SAM morphogenesis. Some cacti have SAMs much larger than those of A. thaliana and other seed plants. This study examined how SAM size affects leaf primordium (LP) size, phyllotaxy and shoot diameter.

Methods

Apices from 183 species of cacti were fixed, microtomed and studied by light microscopy.

Key Results

Cactus SAM diameter varies from 93 to 2565 µm, the latter being 36 times wider than SAMs of A. thaliana and having a volume 45 thousand times larger. Phyllotaxy ranges from distichous to having 56 rows of leaves and is not restricted to Fibonacci numbers. Leaf primordium diameter ranges from 44 to 402 µm, each encompassing many more cells than do LP of other plants. Species with high phyllotaxy have smaller LP, although the correlation is weak. There is almost no correlation between SAM diameter and LP size, but SAM diameter is strongly correlated with shoot diameter, with shoots being about 189·5 times wider than SAMs.

Conclusions

Presumably, genes such as SHOOT-MERISTEMLESS, WUSCHEL and CLAVATA must control much larger volumes of SAM tissue in cacti than they do in A. thaliana, and genes such as PERIANTHIA might establish much more extensive fields of inhibition around LP. These giant SAMs should make it possible to more accurately map gene expression patterns relative to SAM zonation and LP sites.

Related Topics

    loading  Loading Related Articles