Inactivation of the putative tetracycline resistance gene HP1165 inHelicobacter pyloriled to loss of inducible tetracycline resistance

    loading  Checking for direct PDF access through Ovid

Abstract

Tetracycline has been used with other antibiotics in treatment of Helicobacter pylori infection. However, tetracycline resistance has developed in H. pylori clinical isolates, rendering treatment failure. Mutations in 16S rRNA genes have been reported to mediate tetracycline resistance in some isolates. The diversity of tetracycline resistance cases suggests multiple genes are involved. HP1165, a putative tetracycline resistance gene in H. pylori 26695, displays 49.8% identity to the tetracycline efflux gene tetA (P) from Clostridium perfringens. To determine the function of the HP1165 gene in H. pylori, the tetracycline resistance phenotype was investigated, transcription of HP1165 was examined by RT-PCR, and a ΔHP1165 mutant was generated by insertion of the pBCα3 plasmid. The results showed that strains harboring HP1165 were induced to intermediate level resistance in the laboratory (minimum inhibitory concentration=4-6 μg/ml). No mutation was found at or near the tetracycline binding sites of the 16S rRNA gene. The gene was transcribed both in the induced tetracycline resistant and wild type strains, indicating translational or posttranslational control of gene function. Mutation of HP1165 gene resulted in increased tetracycline susceptibility and loss of inducible tetracycline resistance, suggesting that the HP1165 gene is involved in the inducible tetracycline resistance in H. pylori.

Related Topics

    loading  Loading Related Articles