OXIDATIVE STRESS AND SUPEROXIDE DISMUTASE IN DEVELOPMENT, AGING AND GENE REGULATION

    loading  Checking for direct PDF access through Ovid

Abstract

Free radicals and other reactive oxygen species are produced in the metabolic pathways of aerobic cells and affect a number of biological processes. Oxidation reactions have been postulated to play a role in aging, a number of degenerative diseases, differentiation and development as well as serving as subcellular messengers in gene regulatory and signal transduction pathways. The discovery of the activity of superoxide dismutase is a seminal work in free radical biology, because it established that free radicals were generated by cells and because it made removal of a specific free radical substance possible for the first time, which greatly accelerated research in this area. In this review, the role of reactive oxygen in aging, amyotrophic lateral sclerosis (a neurodegenerative disease), development, differentiation, and signal transduction are discussed. Emphasis is also given to the role of superoxide dismutases in these phenomena.

Related Topics

    loading  Loading Related Articles