pH-Activatable MnO-Based Fluorescence and Magnetic Resonance Bimodal Nanoprobe for Cancer Imaging

    loading  Checking for direct PDF access through Ovid

Abstract

Stimuli-responsive nanoprobes that combine both fluorescence and magnetic resonance imaging (MRI) are anticipated to be highly beneficial for tumor visualization with high imaging sensitivity. By employing an interfacial templating scheme, a pH-activatable fluorescence/MRI dual-modality imaging nanoprobe is successfully developed based on the coencapsulation of MnO nanoparticles and coumarin-545T inside a hybrid silica nanoshell. To promote cancer cell targeting with high-specificity, the nanoprobes are also conjugated with folic acid to establish a greater affinity for cancer cells that over-express folate receptors on their cell membrane. In the new nanosystem, MnO nanoparticles are shown to function as an efficient fluorescence quencher of coumarin-545T prior to cellular uptake. However, fluorescence recovery is achieved upon acidic dissolution of the MnO nanoparticles following receptor-mediated endocytosis into the low pH compartments of the cancer cells. Meanwhile, the Mn2+ ions thus released are also shown to exert a strong T1 contrast enhancement in the cancer cells. Therefore, by demonstrating the dual-activatable MRI and fluorescence imaging in response to the low pH conditions, it is envisioned that these nanoprobes would have tremendous potential for emerging cancer-imaging modalities such as image-guided cancer therapy.

Related Topics

    loading  Loading Related Articles