Physiological effects of HIV infection on human intestinal epithelial cells: an in vitro model for HIV enteropathy

    loading  Checking for direct PDF access through Ovid



To determine the role of direct infection of intestinal cells with HIV-1 in the pathogenesis of HIV-related enteropathy.


We infected HT-29–18-C1 intestinal cells with the IIIB strain of HIV and examined the physiologic effects of enterocyte function. Dipeptidase-IV, aminopeptidase-N, gamma glutamic transferase, and alkaline phosphatase were measured in HIV-infected and control cultures. The cellular second messengers intracellular calcium and cyclic adenosine monophosphate were also measured in infected and control cultures.


A persistent infection was established for > 95 days with peak supernatant reverse transcriptase and HIV p24 antigen levels of 5.17 log10 c.p.m./ml and 45 ng/ml, respectively. Brush-border enzyme activity (nmol of product/min/mg protein) tended to be lower in infected cell cultures compared with controls early in infection (P < 0.02). Baseline second messenger concentrations were similar but infected cultures responded to stimulation with a calcium ionophore with an exaggerated increase in intracellular calcium (P=0.03).


These results suggest that absorptive and secretory function of enterocytes may be altered by direct HIV infection and that additional physiologic experiments with this in vitro model may lead to a better understanding of the clinical syndrome of HIV enteropathy.

Related Topics

    loading  Loading Related Articles