An inhibitor of glycosphingolipid metabolism blocks HIV-1 infection of primary T-cells

    loading  Checking for direct PDF access through Ovid


Objective:HIV-1 uses CD4 and chemokine receptors to enter cells. However, other target membrane components may also be involved. This study examines the role of glycosphingolipids (GSL) in HIV-1 entry into primary lymphocytes and its modulation by an inhibitor of GSL biosynthesis.Methods:CD4 lymphocytes purified from normal or the p-group subtype individuals that were defective in Gb3 synthesis were treated with a GSL biosynthesis inhibitor, 1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol (PPMP). The PPMP-treated cells were tested for HIV-1 replication by measuring p24 antigen production for 7–14 days post-infection and for susceptibility to HIV-1 Env-mediated fusion monitored by a fluorescent dye transfer assay. The effects of PPMP treatment on HIV-1 binding to CD4 lymphocytes were also examined by measuring HIV-1 p24.Results:CD4 lymphocytes from p donors that are devoid of Gb3, but have elevated levels of GM3 were highly susceptible to HIV-1 fusion/entry. Pre-treatment of primary human CD4 lymphocytes from normal or p-sub-group type with PPMP, significantly reduced HIV-1 replication with no change in CD4 and CXCR4 levels. Inhibition of HIV-1 infection was due to the block in HIV-1 Env-mediated plasma membrane fusion. Binding of HIV-1 to CD4 lymphocytes was not affected by PPMP treatment.Conclusion:Manipulation of glycosphingolipid metabolic pathways may alter susceptibility of CD4 lymphocytes to HIV-1 entry.

    loading  Loading Related Articles