HIV-1 resistant strains acquired at the time of primary infection massively fuel the cellular reservoir and persist for lengthy periods of time


    loading  Checking for direct PDF access through Ovid

Abstract

Objective:Characterization of the early establishment of the viral reservoir in patients acquiring resistant strains at primary HIV-1 infection (PHI), and longitudinal analysis of resistance mutations in circulating virions and intracellular HIV strains.Patients and methods:Drug-resistance was compared between HIV RNA and peripheral blood mononuclear cell (PBMC)-HIV DNA at the time of PHI in 44 patients enrolled in the Primo Cohort and harbouring plasma HIV-1 resistant to at least one antiretroviral drug. Longitudinal monitoring of viral load and resistance genotype was performed in plasma-HIV RNA and PBMC HIV DNA for at least 24 months in a subset of 10 patients. Phylogenetic analysis of HIV DNA protease gene clones was used to explore the diversity of quasi-species at baseline.Results:Baseline resistance profile was identical in paired HIV RNA and PBMC HIV DNA for all 44 patients. All resistance-associated mutations persisted in plasma and PBMC over 2 years in the five untreated patients. Of the five patients started on empirical HAART, two achieved undetectable HIV RNA at month 6, with long-term persistence of archived drug-resistance mutations in PBMC HIV DNA. Virological failure was observed in the other three patients, resulting in the accumulation of additional drug-resistance mutations in HIV RNA and HIV DNA for two of them. Phylogenetic analysis of HIV DNA clones showed highly homogenous and exclusively resistant quasi-species in the cellular reservoir at baseline.Conclusion:HIV resistant strains acquired at the time of PHI massively fuel the cellular reservoir, and their prolonged persistence is supported by the early expansion of a dominant homogenous and resistant viral population. Results in treated patients showed that classical empirical triple-combination may be suboptimal.

    loading  Loading Related Articles