Pyruvate alleviates lipid peroxidation and multiple-organ dysfunction in rats with hemorrhagic shock☆, ☆☆

    loading  Checking for direct PDF access through Ovid

Abstract

Objective:

Pyruvate can reduce lipid peroxidation, which plays a critical role in organ injury, in various models. However, it is not fully understood if this inhibition occurs in resuscitation of hemorrhagic shock (HS). This study examines effects of pyruvate Ringer solution (PR) in this respect in rats.

Methods:

Rats, subjected to 45% blood loss, were randomly allocated to the 3 groups (n = 18): HS with no fluid resuscitation (group NR), HS resuscitated with lactated Ringer solution (LR) (group LR), and HS resuscitated with PR (group PR). Mean arterial pressure, plasma levels of thiobarbituric acid reactive substances (TBARS), and superoxide dismutase were measured at various time points until 360 minutes after hemorrhage. Visceral organs were harvested at the end for evaluations of the TBARS, antioxidant enzyme, and tissue water content. Other 54 rats with identical procedures without sampling were documented for 24-hour survival rates (n = 18) after fluid resuscitation.

Results:

Pyruvate Ringer solution significantly increased mean arterial pressure and decreased blood TBARS levels after lethal HS. It also reduced TBARS concentrations and glutathione peroxidase activities but significantly enhanced glutathione reductase activities in most organs and greatly improved the ratios of reduced glutathione over oxidized glutathione in various organs in group PR, compared to group LR. Furthermore, PR significantly improved various organ function and water contents relative to LR. Group PR showed a more than 2-fold higher 24-hour survival rate of group LR.

Conclusions:

Pyruvate Ringer solution alleviated organ edema and injury and prompted survival partially through inhibition of lipid peroxidation in various organs in severe HS rats.

Related Topics

    loading  Loading Related Articles