Decorin over-expression by decidual cells in preeclampsia: a potential blood biomarker

    loading  Checking for direct PDF access through Ovid



Decorin, a leucine-rich proteoglycan that is produced by decidual cells, limits invasion and endovascular differentiation of extravillous trophoblast cells during early placentation by binding to multiple tyrosine kinase receptors, in particular, vascular endothelial growth factor receptor-2.


Because many studies have reported an association between poor trophoblast invasion and endovascular differentiation with preeclampsia, the studies reported here tested (1) whether decorin over-expression in the chorionic villi and/or basal decidua is associated with preeclampsia and, if so, (2) whether this association results in a hypoinvasive placenta, and (3) whether elevated plasma decorin concentration in the second trimester is a predictive biomarker for preeclampsia.


Decorin messenger RNA expression was measured with quantitative polymerase chain reaction at the tissue level and with in situ hybridization at the cellular level using 35S-labeled antisense complimentary RNA probe in placentas from healthy control subjects and subjects with preeclampsia (14 each, 23-40 weeks of gestation). Tissue sections of the same placentas were also immunostained for decorin protein. A decorin over-expressing human endometrial stromal cell line was tested for invasion-regulatory effects on an invasive first-trimester extravillous trophoblast cell line HTR-8/SVneo plated in cocultures that were separated by a semipermeable membrane. Furthermore, we conducted retrospective measurements of plasma decorin levels during the second trimester (15-18 weeks of gestation) in a cohort of 28 body mass index–matched pairs of control subjects and subjects with preeclampsia before the onset of clinical disease.


First, decorin messenger RNA expression at the cellular level measured with in situ hybridization exhibited profoundly higher expression levels in basal plate decidual cells within the placentas from preeclamptic subjects than those from control subjects at all gestational ages, whereas no difference between the 2 subject groups was noted in villus mesenchymal cells. Similarly decorin messenger RNA expression at the tissue level in chorionic villi (primarily resulting from fetally derived mesenchymal cells) did not differ significantly between control and preeclampsia placentas. These findings were validated with immunostaining for decorin protein. Second, knocking down decorin gene in a decorin over-expressing endometrial cell line (used as an in vitro surrogate of decorin over-expressing decidual cells) in cocultures with extravillous trophoblast cells abrogated its invasion-restraining actions on trophoblast cells, which indicated paracrine contribution of decorin over-expressing decidua to the poor trophoblast invasiveness in situ. Finally, retrospective measurement of plasma decorin levels during the second trimester in 28 body mass index–matched pairs of control subjects and subjects with preeclampsia revealed elevated plasma decorin levels in all subjects with preeclampsia in all body mass index groups. A receiver operating characteristic curve analysis revealed strong diagnostic performance of plasma decorin in the prediction of preeclampsia status. Although there was no significant gestational age-related change in decorin levels during the second trimester in control or subjects with preeclampsia, we found that plasma decorin had a significant inverse relationship with body mass index or bodyweight.


We conclude that decorin over-expression by basal decidual cells is associated with hypoinvasive phenotype and poor endovascular differentiation of trophoblast cells in preeclampsia and that elevated plasma decorin concentration is a potential predictive biomarker for preeclampsia before the onset of clinical signs.

Related Topics

    loading  Loading Related Articles