Nasal allergen challenge generates 1-0-hexadecyl-2-lyso-sn-glycero-3-phosphocholine.

    loading  Checking for direct PDF access through Ovid

Abstract

We studied antigen-induced platelet activating factor and the 1-0-hexadecyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PAF) in nasal lavage fluids (NLF) by combined gas chromatography/mass spectrometric analysis (GC/MS). During the early allergic reaction, there was a dramatic increase in the levels of lyso-PAF that peaked at 15 min (2.6 +/- 5.2 ng/ml, mean +/- SEM, n = 6). Increasing doses of antigen produced a dose-dependent increase in the levels of lyso-PAF that peaked at the highest dose. Levels of lyso-PAF correlated strongly with those of N-alpha-tosyl-L-arginine methyl ester (TAME)-esterase activity (rs = 0.82, p = 0.0001) and histamine (rs = 0.57, p = 0.002). There was a no significant increase in the quantity of lyso-PAF found in NLF from allergic individuals challenged with diluent or nonallergic individuals challenged with antigen. In subjects showing a late phase reaction, as indicated by symptoms and histamine release, we detected lyso-PAF along with TAME-esterase activity and histamine during the late phase reaction. In contrast to lyso-PAF, PAF levels were near or below the detection limit of the assay in NLF and remained unchanged after antigen challenge. We also investigated the potential pathways for lyso-PAF generation from 2-acetylated phospholipids. We found that the time required for deacetylation of 50% of [3H]PAF (t1/2) to lyso-PAF was 50 min in baseline secretions and 10 and 22 min in NLF obtained 10 min and 24 h after antigen challenge, respectively. These data suggested that catabolic pathways were present in NLF.(ABSTRACT TRUNCATED AT 250 WORDS)

Related Topics

    loading  Loading Related Articles