Amiloride Analogs Inhibit Chronic Hypoxic Pulmonary Hypertension

    loading  Checking for direct PDF access through Ovid


Na+/H+ exchange regulation of intracellular pH may play a permissive role in pulmonary artery smooth muscle cell (PASM) proliferation. Our laboratory has demonstrated that dimethyl amiloride (DMA), an amiloride derivative with enhanced selectivity as an inhibitor of the Na+/H+ antiporter, can inhibit bovine PASM proliferation in vitro. We hypothesized that DMA would inhibit development of hypoxic pulmonary hypertension by interfering with PASM growth in vivo. Sprague-Dawley rats were exposed to 10% O2 for 14 d without (n = 9) or with (n = 7) DMA continuous infusion 3 mg/ kg/d. The animals treated with DMA had significant reductions in pulmonary artery pressure and total pulmonary vascular resistance index (TPVRI) when compared with hypoxic control rats (p < 0.05). Pulmonary vascular remodeling was significantly reduced in animals treated with DMA as measured by percent wall thickness and percentage of thick-walled intra-acinous vessels (p < 0.05). We used a second Na+/H+ exchange inhibitor, ethylisopropyl amiloride (EIPA, 3 mg/kg/d, n = 9), and found similar reductions in pulmonary artery pressure, TPVRI, and pulmonary vascular remodeling. Polycythemia during hypoxia was unchanged by treatment with DMA or EIPA. In conclusion, despite the hypertensive effects of polycythemia, DMA and EIPA can significantly reduce pulmonary vascular remodeling induced by chronic hypoxia.

Related Topics

    loading  Loading Related Articles