Regulation and Tuning of Smooth Muscle Myosin

    loading  Checking for direct PDF access through Ovid

Abstract

Smooth muscle myosin is regulated by phosphorylation of one of the two myosin light chains. This phosphorylation causes an unfolding of the myosin that allows it to interact with actin to produce force. The inactive state involves trapping the myosin in a conformation wherein the myosin heads interact with a segment of the myosin rod. Phosphorylation of the regulatory light chain weakens these interactions and allows the myosin to be activated. Smooth muscle myosin has a large movement of its light chain binding domain that is coupled to ADP release. This structural change may be necessary for the generation of “latch.” Smooth muscle myosin has three different regions that vary to generate different isoforms: (1) an alternative insertion within the myosin head; (2) two possible essential light chains; and (3) an alternative tail at the end of the myosin rod. There is substantial evidence that the insertion in the myosin head increases the enzymatic activity of the myosin and leads to greater shortening velocity. The function of the other two variants is as yet unclear. Sweeney HL. Regulation and tuning of smooth muscle myosin.

Related Topics

    loading  Loading Related Articles