Endurance Training Damages Small Airway Epithelium in Mice

    loading  Checking for direct PDF access through Ovid



In athletes, airway inflammatory cells were found to be increased in induced sputum or bronchial biopsies. Most data were obtained after exposure to cold and dry air at rest or during exercise. Whether training affects epithelial and inflammatory cells in small airways is unknown.


To test whether endurance training under standard environmental conditions causes epithelial damage and inflammation in the small airways of mice.

Methods and Measurements:

Formalin-fixed, paraffin-embedded lung sections were obtained in sedentary (n = 14) and endurance-trained (n = 16) Swiss mice at baseline and after 15, 30, and 45 days of training. The following variables were assessed (morphometry and immunohistochemistry) in small airways (basement membrane length < 1 mm): (1) integrity, proliferation, and apoptosis of bronchiolar epithelium; and (2) infiltration, activation, and apoptosis of inflammatory cells.

Main Results:

Compared with sedentary mice, bronchiolar epithelium of trained mice showed progressive loss of ciliated cells, slightly increased thickness, unchanged goblet cell number and appearance, and increased apoptosis and proliferation (proliferating cell nuclear antigen) (p < 0.001 for all variables). Leukocytes (CD45+ cells) infiltrated airway walls (p < 0.0001) and accumulated within the lumen (p < 0.001); however, apoptosis of CD45+ cells did not differ between trained and sedentary mice. Nuclear factor-κB translocation and inhibitor-alpha of NF-κB (IκBα) phosphorylation were not increased in trained compared with sedentary mice.


Bronchiolar epithelium showed damage and repair associated with endurance training. Training increased inflammatory cells in small airways, but inflammatory activation was not increased. These changes may represent an adaptive response to increased ventilation during exercise.

Related Topics

    loading  Loading Related Articles