Sequential Monitoring and Stability ofEx Vivo–Expanded Autologous and Nonautologous Regulatory T Cells Following Infusion in Nonhuman Primates

    loading  Checking for direct PDF access through Ovid

Abstract

Ex vivo–expanded cynomolgus monkey CD4+CD25+CD127- regulatory T cells (Treg) maintained Foxp3 demethylation status at the Treg-specific demethylation region, and potently suppressed T cell proliferation through three rounds of expansion. When carboxyfluorescein succinimidyl ester- or violet proliferation dye 450-labeled autologous (auto) and nonautologous (non-auto)-expanded Treg were infused into monkeys, the number of labeled auto-Treg in peripheral blood declined rapidly during the first week, but persisted at low levels in both normal and anti-thymocyte globulin plus rapamycin-treated (immunosuppressed; IS) animals for at least 3 weeks. By contrast, MHC-mismatched non-auto-Treg could not be detected in normal monkey blood or in blood of two out of the three IS monkeys by day 6 postinfusion. They were also more difficult to detect than auto-Treg in peripheral lymphoid tissue. Both auto- and non-auto-Treg maintained Ki67 expression early after infusion. Sequential monitoring revealed that adoptively transferred auto-Treg maintained similarly high levels of Foxp3 and CD25 and low CD127 compared with endogenous Treg, although Foxp3 staining diminished over time in these nontransplanted recipients. Thus, infusedex vivo–expanded auto-Treg persist longer than MHC-mismatched non-auto-Treg in blood of nonhuman primates and can be detected in secondary lymphoid tissue. Host lymphodepletion and rapamycin administration did not consistently prolong the persistence of non-auto-Treg in these sites.

Related Topics

    loading  Loading Related Articles