BK Polyomavirus Replication in Renal Tubular Epithelial Cells Is Inhibited by Sirolimus, but Activated by Tacrolimus Through a Pathway Involving FKBP-12

    loading  Checking for direct PDF access through Ovid


BK polyomavirus (BKPyV) replication causes nephropathy and premature kidney transplant failure. Insufficient BKPyV-specific T cell control is regarded as a key mechanism, but direct effects of immunosuppressive drugs on BKPyV replication might play an additional role. We compared the effects of mammalian target of rapamycin (mTOR)- and calcineurin-inhibitors on BKPyV replication in primary human renal tubular epithelial cells. Sirolimus impaired BKPyV replication with a 90% inhibitory concentration of 4 ng/mL by interfering with mTOR–SP6-kinase activation. Sirolimus inhibition was rapid and effective up to 24 h postinfection during viral early gene expression, but not thereafter, during viral late gene expression. The mTORC-1 kinase inhibitor torin-1 showed a similar inhibition profile, supporting the notion that early steps of BKPyV replication depend on mTOR activity. Cyclosporine A also inhibited BKPyV replication, while tacrolimus activated BKPyV replication and reversed sirolimus inhibition. FK binding protein 12kda (FKBP-12) siRNA knockdown abrogated sirolimus inhibition and increased BKPyV replication similar to adding tacrolimus. Thus, sirolimus and tacrolimus exert opposite effects on BKPyV replication in renal tubular epithelial cells by a mechanism involving FKBP-12 as common target. Immunosuppressive drugs may therefore contribute directly to the risk of BKPyV replication and nephropathy besides suppressing T cell functions. The data provide rationales for clinical trials aiming at reducing the risk of BKPyV replication and disease in kidney transplantation.

Comparing direct effects of immunosuppressive drugs on BK polyomavirus replication in primary human renal proximal tubular epithelial cells, this study demonstrates that the virus is inhibited by sirolimus but activated by tacrolimus through a mechanism involving competitive binding to the small host cell protein FKBP-12.

Related Topics

    loading  Loading Related Articles