Chronic Gestational Exposure to Ethanol Leads to Enduring Aberrances in Cortical Form and Function in the Medial Prefrontal Cortex

    loading  Checking for direct PDF access through Ovid



Exposure to ethanol (EtOH) in utero alters the disposition of tangentially migrating GABAergic interneurons in the fetal brain. The medial ganglionic eminence (MGE) gives rise to a large portion of cortical GABAergic interneurons, including the parvalbumin-expressing interneurons that shape and contribute to inhibitory/excitatory (I/E) balance of the intracortical circuit. Here, we investigated in the mouse medial prefrontal cortex (mPFC) the hypothesis that low levels of maternal EtOH consumption from closure of the neural tube embryonic day (E) 9.5 until birth result in an enduring interneuronopathy.


Pregnant mice were subjected to a 2% w/w EtOH consumption regimen starting at neural tube closure and ending at parturition. Neurogenesis in the MGE was assessed by 5-bromo-2-deoxyuridine (BrdU) immunofluorescence at E12.5. The count and distribution of parvalbumin-expressing interneurons were determined in adult animals, and patch clamp electrophysiology was performed to determine GABAergic function and I/E balance. Open-field behavior in adult mice was assessed to determine whether the EtOH-exposed cohort displayed a lasting alteration in exploratory behavior.


In embryos exposed to EtOH in utero, we found increased BrdU labeling in the MGE, pointing to increased neurogenesis. Adult mice prenatally exposed to EtOH were hyperactive, and this was associated with an increase in parvalbumin-expressing GABAergic interneurons in the mPFC. In addition, prenatal EtOH exposure altered the balance between spontaneous inhibitory and excitatory synaptic input and attenuated GABAergic tone in layer V mPFC pyramidal neurons in juvenile mice.


These findings underscore that altered migration of GABAergic interneurons contributes to the EtOH-induced aberration of cortical development and that these effects persist into adulthood as altered cortical form and function.

Related Topics

    loading  Loading Related Articles