Psychotropic Drug Effects on Gene Transcriptomics Relevant to Alzheimer Disease

    loading  Checking for direct PDF access through Ovid


Psychotropics are widely prescribed in Alzheimer disease (AD) without regard to their pathobiological effects. Results summarize a comprehensive survey of psychotropic effects on messenger ribonucleic acid (mRNA) expression for 52 genes linked to AD. Pending future investigations, current data indicate that atypical antipsychotics, lithium, and fluoxetine reduce AD risk, whereas other drug classes promote risk. Risk may be attenuated by antipsychotics and lithium (down-regulate TNF), atypical antipsychotics (down-regulate TF), risperidone (down-regulates IL1B), olanzapine (up-regulates TFAM, down-regulates PRNP), fluoxetine (up-regulates CLU, SORCS1, NEDD9, GRN, and ECE1), and lithium coadministered with antipsychotics (down-regulates IL1B). Risk may be enhanced by neuroleptics (up-regulate TF), haloperidol (up-regulates IL1B and PION), olanzapine (down-regulates THRA and PRNP, up-regulates IL1A), and chlorpromazine, imipramine, maprotiline, fluvoxamine, and diazepam (up-regulate IL1B). There were no results for dextromethorphan-plus-quinidine. Fluoxetine effects on CLU, NEDD9, and GRN were statistically robust. Drug effects on specific variants, polymorphisms, genotypes, and other genes (CCR2, TF, and PRNP) are detailed. Translational AD risk applications and their limitations related to specific genes, mutations, variants, polymorphisms, genotypes, brain site, sex, clinical population, AD stage, and other factors are discussed. This report provides an initial summary and framework to understand the potential impact of psychotropic drugs on AD-relevant genes.

Related Topics

    loading  Loading Related Articles