Effect of Subarachnoid Bupivacaine Block on Anesthetic Requirements for Thiopental in Rats

    loading  Checking for direct PDF access through Ovid

Abstract

Background

Subarachnoid bupivacaine blockade has been reported to reduce thiopental and midazolam hypnotic requirements in patients. The purpose of this study was to examine if local anesthetically induced lumbar intrathecal blockade would reduce thiopental requirements for blockade of motor responses to noxious and nonnoxious stimuli in rats.

Methods

After intrathecal and external jugular catheter placement, rats were assigned randomly to two groups in a crossover design study, with each rat to receive either 10 micro liter of 0.75% bupivacaine or 10 micro liter of normal saline intrathecally. The doses of intravenously administered thiopental required to ablate the eyelid reflex, to block the withdrawal reflex of a front limb digit, and to block the corneal reflex were compared. In two separate groups of animals, hemodynamic parameters and concentrations of thiopental in the brain were compared between intrathecally administered bupivacaine and saline.

Results

The thiopental dose required to block the described responses was decreased with intrathecally administered bupivacaine versus intrathecally administered saline from (mean +/- SD) 40 +/- 5 to 24 +/- 4 mg/kg (P < 0.001) for the eyelid reflex, from 51 +/- 6 to 29 +/- 6 mg/kg (P < 0.005) for front limb withdrawal, and from 67 +/- 8 to 46 +/- 8 mg/kg (P < 0.01) for the corneal reflex. The concentration of thiopental in the brain at the time of corneal reflex blockade for the group given bupivacaine was significantly lower than in the group given saline (24.1 vs. 35.8 micro gram/g, P = 0.02).

Conclusion

This study demonstrates that lumbar intrathecally administered local anesthetic blockade decreases anesthetic requirements for thiopental for a spectrum of end points tested. This effect is due neither to altered pharmacokinetics nor to a direct action of the local anesthetic on the brain; rather, it is most likely due to decreased afferent input.

Related Topics

    loading  Loading Related Articles