Intrathecal Adenosine: Interactions with Spinal Clonidine and Neostigmine in Rat Models of Acute Nociception and Postoperative Hypersensitivity

    loading  Checking for direct PDF access through Ovid

Abstract

Background

Spinal adenosine receptor agonists exert antinociception in animal models of acute and chronic pain, but adenosine itself has not been examined. The authors tested the antinociceptive and antihypersensitivity interactions of intrathecal adenosine and its interactions with intrathecal clonidine and neostigmine in rat models of acute thermal nociception and postoperative hypersensitivity.

Methods

Rats were prepared with lumbar intrathecal catheters. Responses to acute noxious stimulation were evaluated by latency to paw withdrawal from a radiant heat source focused on the hind paw. Postoperative hypersensitivity was measured after an incision in the rat hind paw by application of von Frey filaments to the heel adjacent to the wound. An isobolographic design was used to distinguish between additive and synergistic drug interactions.

Results

Spinal administration of clonidine and neostigmine, but not adenosine, produced dose-dependent antinociception to noxious thermal stimulation. Addition of adenosine enhanced the antinociceptive effect of clonidine but not neostigmine. In contrast, each of these three agents alone reversed postoperative hypersensitivity. Pretreatment with the [Greek small letter alpha]-adrenergic antagonist phentolamine completely reversed adenosine's antihypersensitivity action. Adenosine interacted synergistically with neostigmine and additively with clonidine in reducing postoperative hypersensitivity.

Conclusions

These data indicate that intrathecal adenosine by itself has no antinociceptive properties to acute noxious thermal stimulation in rats, but enhances clonidine's antinociception. In contrast, intrathecal adenosine is active against postoperative hypersensitivity by an adrenergic mechanism. Different interactions between adenosine, clonidine, and neostigmine in acute nociception and postoperative hypersensitivity models are consistent with altered central processing of sensory information after peripheral injury.

Related Topics

    loading  Loading Related Articles