Effects of Sevoflurane on Regional Myocardial Blood Flow Distribution: Quantification with Myocardial Contrast Echocardiography

    loading  Checking for direct PDF access through Ovid



Using myocardial contrast echocardiography, the authors tried to determine whether sevoflurane causes myocardial blood maldistribution in humans and dogs.


In animal experiments, 15 mongrel dogs were organized into dipyridamole (n = 6) and sevoflurane (n = 9) groups. Sonicated albumin was infused into the left main coronary artery. The peak gray level correlated for background was analyzed at the following intervals: (1) at baseline, (2) after stenosis of the left circumflex coronary artery (blood flow reduced by 40%), (3) after administration of dipyridamole (1 mg/kg given intravenously) or sevoflurane (1 minimum alveolar concentration) during stenosis, and (4) after phenylephrine during stenosis and administration of dipyridamole or sevoflurane. In human studies, nine patients undergoing coronary artery bypass grafting were studied. During partial extracorporeal circulation, the peak gray level was analyzed before and 20 min after sevoflurane (1 minimum alveolar concentration).


In animal experiments, dipyridamole decreased significantly the inner:outer ratio of the peak gray level in the ischemic area and the ischemic:normal ratio of the peak gray level. After arterial pressure was restored with phenylephrine, neither the inner:outer ratio nor the ischemic:normal ratio improved. In contrast, after sevoflurane administration, the inner:outer ratio and the ischemic:normal ratio remained unchanged, but these increased with phenylephrine. In human studies, sevoflurane did not change the inner:outer ratio in the area supplied by the most stenotic coronary artery.


These results suggest that dipyridamole, a potent coronary vasodilator, produces maldistribution of coronary blood flow in our dog models, whereas sevoflurane does not do this in animal or human studies.

Related Topics

    loading  Loading Related Articles