Modeling the Anesthetic Effect of Ropivacaine after a Femoral Nerve Block in Orthopedic Patients: A Population Pharmacokinetic–Pharmacodynamic Analysis

    loading  Checking for direct PDF access through Ovid



Even though ropivacaine is frequently used during orthopedic surgery, the relationship between plasma concentrations and degree of sensory anesthesia after a peripheral nerve block is currently unknown. The aim of this study was to characterize this relation using population pharmacokinetic–pharmacodynamic modeling.


Femoral nerve block was performed by the anterior approach using a single injection (20 ml) of 0.5% ropivacaine hydrochloride in 20 patients scheduled for total knee arthroplasty under spinal anesthesia. Sensory thresholds in response to a gradual increase in transcutaneous electrical stimulation (primary endpoints), loss and recovery of ice-cold sensation, as well as total ropivacaine plasma concentrations were determined up to 4 days after administration of the local anesthetic. Using NONMEM (ICON, USA), sensory block was modeled by assuming an equilibration delay (ke0) between amount in the depot and effect-site compartments.


Mean effect-site amount producing 90% of the maximum possible effect (AE90) was estimated as 20.2 mg. At 2 × AE90, the sigmoid Emax model predicted a mean onset time of 23.4 min and mean duration of 22.9 h. Interindividual variability (IIV) for AE50 was 49%. Typical ke0 half-life was 34.7 min (IIV = 52%) and steepness parameter 8.7 (IIV = 48%). None of the pharmacodynamic model parameters showed sex, age, or body weight dependency.


A population pharmacokinetic/pharmacodynamic model was developed that quantitatively describes the sensory component of a femoral nerve block in orthopedic patients. Further clinical studies will be needed to validate the clinical relevance of this finding.

Related Topics

    loading  Loading Related Articles