Does Aerobic Respiration Produce Carbon Dioxide or Hydrogen Ion and Bicarbonate?

    loading  Checking for direct PDF access through Ovid


Maintenance of intracellular pH is critical for clinical homeostasis. The metabolism of glucose, fatty acids, and amino acids yielding the generation of adenosine triphosphate in the mitochondria is accompanied by the production of acid in the Krebs cycle. Both the nature of this acidosis and the mechanism of its disposal have been argued by two investigators with a long-abiding interest in acid–base physiology. They offer different interpretations and views of the molecular mechanism of this intracellular pH regulation during normal metabolism. Dr. John Severinghaus has posited that hydrogen ion and bicarbonate are the direct end products in the Krebs cycle. In the late 1960s, he showed in brain and brain homogenate experiments that acetazolamide, a carbonic anhydrase inhibitor, reduces intracellular pH. This led him to conclude that hydrogen ion and bicarbonate are the end products, and the role of intracellular carbonic anhydrase is to rapidly generate diffusible carbon dioxide to minimize acidosis. Dr. Erik Swenson posits that carbon dioxide is a direct end product in the Krebs cycle, a more widely accepted view, and that acetazolamide prevents rapid intracellular bicarbonate formation, which can then codiffuse with carbon dioxide to the cell surface and there be reconverted for exit from the cell. Loss of this “facilitated diffusion of carbon dioxide” leads to intracellular acidosis as the still appreciable uncatalyzed rate of carbon dioxide hydration generates more protons. This review summarizes the available evidence and determines that resolution of this question will require more sophisticated measurements of intracellular pH with faster temporal resolution.

Related Topics

    loading  Loading Related Articles