What is the animal doing? Tools for exploring behavioural structure in animal movements


    loading  Checking for direct PDF access through Ovid

Abstract

Summary1. Movement data provide a window – often our only window – into the cognitive, social and biological processes that underlie the behavioural ecology of animals in the wild. Robust methods for identifying and interpreting distinct modes of movement behaviour are of great importance, but complicated by the fact that movement data are complex, multivariate and dependent. Many different approaches to exploratory analysis of movement have been developed to answer similar questions, and practitioners are often at a loss for how to choose an appropriate tool for a specific question.2. We apply and compare four methodological approaches: first passage time (FPT), Bayesian partitioning of Markov models (BPMM), behavioural change point analysis (BCPA) and a fitted multistate random walk (MRW) to three simulated tracks and two animal trajectories – a sea lamprey (Petromyzon marinus) tracked for 12 h and a wolf (Canis lupus) tracked for 1 year.3. The simulations – in which, respectively, velocity, tortuosity and spatial bias change – highlight the sensitivity of all methods to model misspecification. Methods that do not account for autocorrelation in the movement variables lead to spurious change points, while methods that do not account for spatial bias completely miss changes in orientation.4. When applied to the animal data, the methods broadly agree on the structure of the movement behaviours. Important discrepancies, however, reflect differences in the assumptions and nature of the outputs. Important trade-offs are between the strength of the a priori assumptions (low in BCPA, high in MRW), complexity of output (high in the BCPA, low in the BPMM and MRW) and explanatory potential (highest in the MRW).5. The animal track analysis suggests some general principles for the exploratory analysis of movement data, including ways to exploit the strengths of the various methods. We argue for close and detailed exploratory analysis of movement before fitting complex movement models.Identifying unique behaviours from animal movement data is a fundamental challenge. To help practitioners navigate a bewildering array of available tools, the authors review a range of approaches and apply them to data sets, identifying unique strengths and potential pitfalls. The authors conclude with basic principles for exploratory analysis of behavioural changes.

    loading  Loading Related Articles