Ecological opportunity drives individual dietary specialization in leopards


    loading  Checking for direct PDF access through Ovid

Abstract

Individual specialization, when individuals exploit only a subset of resources utilized by the population, is a widespread phenomenon. It provides the basis for evolutionary diversification and can impact population and community dynamics. Both phenotypic traits and environmental conditions are predicted to influence individual specialization; however, its adaptive consequences are poorly understood, particularly among large mammalian carnivores that play an important role in shaping ecosystems.We used observations of 2,960 kills made by 49 leopards Panthera pardus in the Sabi Sand Game Reserve, South Africa, to quantify the magnitude of individual dietary specialization in a solitary large carnivore, and to examine the proximate and ultimate drivers of this behaviour.We found evidence of individual specialization in leopard diet, with respect to both the species and size of prey killed. Males tended to be more specialized than females, likely because they could access a wider range of prey due to larger body size. Similarly, individuals that encountered a greater diversity of prey tended to be more specialized. Our results confirmed that ecological opportunity was a key determinant of individual specialization; however, contrary to predictions, per capita resource availability (and by extension, intraspecific competition) did not affect the degree of specialization exhibited by individuals.Surprisingly, dietary specialization appeared to disadvantage male leopards. Specialist males overlapped with fewer resident females, had fewer cubs born on their home ranges and had fewer cubs survive to independence on their home ranges than generalist males. This may have resulted from the high degree of environmental stochasticity experienced during our study, as dietary specialization is expected to advantage individuals more during periods of resource predictability.In summary, we showed that a species usually considered to be a dietary generalist was in fact a heterogeneous collection of specialist and generalist individuals. Individual specialization is typically assumed to be maintained by disruptive and/or fluctuating selection; hence, the somewhat paradoxical coexistence of both in the same population might be explained by a dynamic evolutionary equilibrium that exists between specialists and generalists, in which each benefit under different conditions.

    loading  Loading Related Articles