Within-breed heterozygosity of canine single nucleotide polymorphisms identified by across-breed comparison


    loading  Checking for direct PDF access through Ovid

Abstract

SummaryIdentification of single nucleotide polymorphisms (SNPs) by DNA sequence comparison across breeds is a strategy for developing genetic markers that are useful for many breeds. However, the heterozygosity of SNPs identified in this way might be severely reduced within breeds by inbreeding or genetic drift in the small effective population size of a breed (population subdivision). The effect of inbreeding and population subdivision on heterozygosity of SNPs in dog breeds has never been investigated in a systematic way. We determined the genotypes of dogs from three divergent breeds for SNPs in four canine genes (ACTC, LMNA, SCGB, and TYMS) identified by across-breed DNA sequence comparison, and compared the genotype frequencies to those expected under Hardy–Weinberg equilibrium (HWE). Although population subdivision significantly skewed allele frequencies across breeds for two of the SNPs, the deviations of observed heterozygosities compared with those expected within breeds were minimal. These results indicate that across-breed DNA sequence comparison is a reasonable strategy for identifying SNPs that are useful within many canine breeds.

    loading  Loading Related Articles