Identification of potential functional variants underlying ovine resistance to gastrointestinal nematode infection by using RNA-Seq


    loading  Checking for direct PDF access through Ovid

Abstract

SummaryIn dairy sheep flocks from Mediterranean countries, replacement and adult ewes are the animals most affected by gastrointestinal nematode (GIN) infections. In this study, we have exploited the information derived from an RNA-Seq experiment with the aim of identifying potential causal mutations related to GIN resistance in sheep. Considering the RNA-Seq samples from 12 ewes previously classified as six resistant and six susceptible animals to experimental infection by Teladorsagia circumcincta, we performed a variant calling analysis pipeline using two different types of software, gatk version 3.7 and Samtools version 1.4. The variants commonly identified by the two packages (high-quality variants) within two types of target regions – (i) QTL regions previously reported in sheep for parasite resistance based on SNP-chip or sequencing technology studies and (ii) functional candidate genes selected from gene expression studies related to GIN resistance in sheep – were further characterised to identify mutations with a potential functional impact. Among the genes harbouring these potential functional variants (930 and 553 respectively for the two types of regions), we identified 111 immune-related genes in the QTL regions and 132 immune-related genes from the initially selected candidate genes. For these immune-related genes harbouring potential functional variants, the enrichment analyses performed highlighted significant GO terms related to apoptosis, adhesion and inflammatory response, in relation to the QTL related variants, and significant disease-related terms such as inflammation, adhesion and necrosis, in relation to the initial candidate gene list. Overall, the study provides a valuable list of potential causal mutations that could be considered as candidate causal mutations in relation to GIN resistance in sheep. Future studies should assess the role of these suggested mutations with the aim of identifying genetic markers that could be directly implemented in sheep breeding programmes considering not only production traits, but also functional traits such as resistance to GIN infections.

    loading  Loading Related Articles