Somatic mutation, copy number and transcriptomic profiles of primary and matched metastatic estrogen receptor-positive breast cancers

    loading  Checking for direct PDF access through Ovid


BackgroundEstrogen receptor-positive (ER+) breast cancers (BCs) constitute the most frequent BC subtype. The molecular landscape of ER+ relapsed disease is not well characterized. In this study, we aimed to describe the genomic evolution between primary (P) and matched metastatic (M) ER+ BCs after failure of adjuvant therapy.Materials and methodsA total of 182 ER+ metastatic BC patients with long-term follow-up were identified from a single institution. P tumor tissue was available for all patients, with 88 having matched M material. According to the availability of tumor material, samples were characterized using a 120 mutational hotspot qPCR, a 29 gene copy number aberrations (CNA) and a 400 gene expression panels. ESR1 mutations were assayed by droplet digital PCR. Molecular alterations were correlated with overall survival (OS) using the Cox proportional hazards regression models.ResultsThe median follow-up was 6.4 years (range 0.5–26.6 years). Genomic analysis of P tumors revealed somatic mutations in PIK3CA, KRAS, AKT1, FGFR3, HRAS and BRAF at frequencies of 41%, 6%, 5%, 2%, 1% and 2%, respectively, and CN amplification of CCND1, ZNF703, FGFR1, RSF1 and PAK1 at 23%, 19%, 17%, 12% and 11%, respectively. Mutations and CN amplifications were largely concordant between P and matched M (>84%). ESR1 mutations were found in 10.8% of the M but none of the P. Thirteen genes, among which ESR1, FOXA1, and HIF1A, showed significant differential expression between P and M. In P, the differential expression of 18 genes, among which IDO1, was significantly associated with OS (FDR < 0.1).ConclusionsDespite the large concordance between P and matched M for the evaluated molecular alterations, potential actionable targets such as ESR1 mutations were found only in M. This supports the importance of characterizing the M disease. Other targets we identified, such as HIF1A and IDO1, warrant further investigation in this patient population.

    loading  Loading Related Articles