Learning Curves in Abdominal Wall Reconstruction With Components Separation: One Step Closer Toward Improving Outcomes and Reducing Complications

    loading  Checking for direct PDF access through Ovid

Abstract

Introduction

Learning curves are characterized by incremental improvement of a process, through repetition and reduction in variability, but can be disrupted with the emergence of new techniques and technologies. Abdominal wall reconstruction continues to evolve, with the introduction of components separation in the 1990s and biologic mesh in the 2000s. As such, attempts at innovation may impact the success of reconstructive outcomes and yield a changing set of complications. The purpose of this project was to describe the paradigm shift that has occurred in abdominal wall reconstruction during the past 10 years, focusing on the incorporation of new materials and methods.

Methods

We reviewed 150 consecutive patients who underwent abdominal wall reconstruction of midline defects with components separation, from 2000 to 2010. Both univariate and multivariate logistic regression analyses were performed to identify risk factors for complications. Patients were stratified into the following periods: early (2000–2003), middle (2004–2006), and late (2007–2010).

Results

From 2000 to 2010, we performed 150 abdominal wall reconstructions with components separation [mean age, 50.2 years; body mass index (BMI), 30.4; size of defect, 357 cm2; length of stay, 9.6 days; follow-up, 4.4 years]. Primary fascial closure was performed in 120 patients. Mesh was used in 114 patients in the following locations: overlay (n = 28), inlay (n = 30), underlay (n = 54), and unknown (n = 2). Complications occurred in a bimodal distribution, highest in 2001 (introduction of biologic mesh) and 2008 (conversion from underlay to overlay location). Age, sex, history of smoking, defect size, and length of stay were not associated with incidence of complications. Unadjusted risk factors for seroma (16.8%) were elevated BMI, of previous hernia repairs, use of overlay mesh, and late portion of the learning curve, with logistic regression supporting only late portion of the learning curve [odds ratio (OR), 4.3; 95% confidence interval (CI), 1.0–18.6] and BMI (OR, 1.17; 95% CI, 1.06–1.29). The only unadjusted risk factor for recurrence was location of mesh. Logistic regression, comparing underlay, inlay, and overlay mesh to no mesh, revealed that the use of underlay mesh predicted recurrence (OR, 3.0; 95% CI, 1.04–8.64). All P values were less than 0.05.

Conclusions

The overall learning curve for a specific procedure, such as abdominal wall reconstruction, can be quite volatile, especially as innovative techniques and new technologies are introduced and incorporated into the surgeon’s practice. Our current practice includes primary repair myofascial flap of the components separation and the use of biologic mesh as an overlay graft, anchored to the external oblique. This process of outcome improvement is not gradual but is often punctuated by periods of failure and redemption.

Related Topics

    loading  Loading Related Articles