Selection of therapeutic H5N1 monoclonal antibodies following IgVH repertoire analysis in mice

    loading  Checking for direct PDF access through Ovid

Abstract

The rapid rate of influenza virus mutation drives the emergence of new strains that inflict serious seasonal epidemics and less frequent, but more deadly, pandemics. While vaccination provides the best protection against influenza, its utility is often diminished by the unpredictability of new pathogenic strains. Consequently, efforts are underway to identify new antiviral drugs and monoclonal antibodies that can be used to treat recently infected individuals and prevent disease in vulnerable populations. Next Generation Sequencing (NGS) and the analysis of antibody gene repertoires is a valuable tool for Ab discovery. Here, we describe a technology platform for isolating therapeutic monoclonal antibodies (MAbs) by analyzing the IgVH repertoires of mice immunized with recombinant H5N1 hemagglutinin (rH5). As an initial proof of concept, 35 IgVH genes were selected using a CDRH3 search algorithm and co-expressed in a murine IgG2a expression vector with a panel of germline murine kappa genes. Culture supernatants were then screened for antigen binding. Seventeen of the 35 IgVH MAbs (49%) bound rH5VN1203 in preliminary screens and 8 of 9 purified MAbs inhibited 3 heterosubtypic strains of H5N1 virus when assayed by HI. Two of these MAbs demonstrated prophylactic and therapeutic activity in virus-challenged mice. This is the first example in which an NGS discovery platform has been used to isolate anti-influenza MAbs with relevant therapeutic activity.

Related Topics

    loading  Loading Related Articles