Glucocorticoids and sympathetic neurotransmitters modulate the acute immune response to Trypanosoma cruzi

    loading  Checking for direct PDF access through Ovid

Abstract

Evidence suggests that natural and adaptive immune responses can trigger neuroendocrine responses. Here, we discuss changes in the activity of the hypothalamus–pituitary–adrenal axis and in autonomic nerves, predominantly of the sympathetic nervous system, in a mouse model of acute infection with Trypanosoma cruzi. The endocrine response includes a marked increased release of glucocorticoid and a decrease of immune-stimulatory hormones, such as dehydroepiandrosterone sulfate, prolactin, and growth hormone during infection. These endocrine changes result in reduced proinflammatory cytokine production, increased regulatory/effector T cell ratio, and thymus atrophy. The sympathetic activity in the spleen of infected mice is also markedly reduced. However, the residual sympathetic activity can modulate the immune response to the parasite, as shown by increased mortality and production of proinflammatory cytokines in sympathetically denervated, infected mice. The outcome of the neuroendocrine response is the moderation of the intensity of the immune response to the parasite, an effect that results in delayed mortality in susceptible mice, and favors the course toward chronicity in more resistant animals.

Related Topics

    loading  Loading Related Articles