Efficient induction of formate hydrogen lyase of aerobically grownEscherichia coliin a three-step biohydrogen production process

    loading  Checking for direct PDF access through Ovid

Abstract

A three-step biohydrogen production process characterized by efficient anaerobic induction of the formate hydrogen lyase (FHL) of aerobically grown Escherichia coli was established. Using E. coli strain SR13 (fhlA++, ΔhycA) at a cell density of 8.2 g/l medium in this process, a specific hydrogen productivity (28.0 ± 5.0 mmol h-1 g-1 dry cell) of one order of magnitude lower than we previously reported was realized after 8 h of anaerobic incubation. The reduced productivity was attributed partly to the inhibitory effects of accumulated metabolites on FHL induction. To avoid this inhibition, strain SR14 (SR13 ΔldhA ΔfrdBC) was constructed and used to the effect that specific hydrogen productivity increased 1.3-fold to 37.4 ± 6.9 mmol h-1 g-1. Furthermore, a maximum hydrogen production rate of 144.2 mmol h-1 g-1 was realized when a metabolite excretion system that achieved a dilution rate of 2.0 h-1 was implemented. These results demonstrate that by avoiding anaerobic cultivation altogether, more economical harvesting of hydrogen-producing cells for use in our biohydrogen process was made possible.

Related Topics

    loading  Loading Related Articles