Remaining acetamide in acetonitrile degradation using nitrile hydratase- and amidase-producing microorganisms

    loading  Checking for direct PDF access through Ovid

Abstract

The tandem conversion process involving nitrile hydratase- and amidase-producing microorganisms has potential for use in the treatment of acetonitrile-containing wastes. In that process, the acetamide hydrolysis step catalyzed by amidase is very slow compared with the acetonitrile hydration step catalyzed by nitrile hydratase, and a small amount of acetamide remains in the resulting solution. This study aimed to improve the efficiency of the acetamide hydrolysis step. An amidase-producing microorganism, Rhodococcus sp. S13-4, was newly obtained, whose use enabled rapid acetamide degradation. Though residual acetamide was still detected, it was successfully reduced by the addition of cation/anion mixed ion exchange resin or calcium hydroxide after the acetamide hydrolysis reaction using Rhodococcus sp. S13-4 cells. This result implies that acetamide hydrolysis and acetamide formation are in equilibrium. The incubation of Rhodococcus sp. S13-4 cells with high concentrations of ammonium acetate produced acetamide. The purified amidase from Rhodococcus sp. S13-4 revealed the acetamide formation activity (specific activity of 30.6 U/mg protein). This suggests that the amidase-catalyzed amide formation may cause the remaining of acetamide in the acetonitrile conversion process.

Related Topics

    loading  Loading Related Articles