Translocation of AIF in the human and rat striatum following protracted haloperidol, but not clozapine treatment

    loading  Checking for direct PDF access through Ovid


Loss of mitochondrial membrane integrity and consequent release of apoptogenic factors may be involved in mediating striatal neurodegeneration after prolonged treatment with the typical antipsychotic drug haloperidol. Apoptosis-inducing factor (AIF), an intramitochondrial protein, may have a large influence on mediating haloperidol-induced striatal neuron destruction. Translocation of this protein from mitochondria to the nucleus promotes cell death independently of the caspase cascade. To examine how AIF may contribute to haloperidol-induced apoptosis, AIF translocation was observed in three haloperidol treatment paradigms. SH-SY5Y cells were treated with both haloperidol and clozapine and examined for AIF immunofluorescence. Immunohistochemistry was also performed on human striatal sections obtained from the Stanley Foundation Neuropathology Consortium and on rat brain sections following 28 days of antipsychotic drug treatment. In the cellular model haloperidol, but not clozapine treatment increased the nuclear AIF immunofluorescent signal and decreased cell viability. Corollary to these findings, striatal sections from patients who had taken haloperidol and rats who were administered haloperidol both had an elevated nuclear AIF signal. The results provide novel evidence implicating the involvement of AIF in haloperidol-associated apoptosis and its relevance to the development of typical antipsychotic drug-related adverse effects such as tardive dyskinesia.

Related Topics

    loading  Loading Related Articles