Polyphenolic Antioxidants Efficiently Protect Urease from Inactivation by Ultrasonic Cavitation


    loading  Checking for direct PDF access through Ovid

Abstract

Inactivation of urease (25 nM) in aqueous solutions (pH 5.0–6.0) treated with low-frequency ultrasound (LFUS; 27 kHz, 60 W/cm2, 36–56°C) or high-frequency ultrasound (HFUS; 2.64 MHz, 1 W/cm2, 36 or 56°C) has been characterized quantitatively, using first-order rate constants: kin, total inactivation; k*in, thermal inactivation; and kin(us), ultrasonic inactivation. Within the range from 1 nM to 10 μM, propyl gallate (PG) decreases by approximately threefold the rate of LFUS-induced inactivation of urease (56°C), whereas resorcinol poly-2-disulfide stops this process at 1 nM or higher concentrations. PG completely inhibits HFUS-induced inactivation of urease at 1 nM (36°C) or 10 nM (56°C). At 0.2–1.0 μM, human serum albumin (HSA) increases the resistance of urease treated with HFUS to temperature- and cavitation-induced inactivation. Complexes of gallic acid polydisulfide (GAPDS) with HSA (GAPDS–HSA), formed by conjugation of 1.0 nM GAPDS with 0.33 nM HSA, prevent HFUS-induced urease inactivation (56°C).

    loading  Loading Related Articles