Endothelial Cell–Derived von Willebrand Factor Is the Major Determinant That Mediates von Willebrand Factor–Dependent Acute Ischemic Stroke by Promoting Postischemic Thrombo-Inflammation

    loading  Checking for direct PDF access through Ovid



von Willebrand factor (VWF), which is synthesized in endothelial cells and megakaryocytes, is known to worsen stroke outcome. In vitro studies suggest that platelet-derived VWF (Plt-VWF) is biochemically different from the endothelial cell–derived VWF (EC-VWF). However, little is known about relative contribution of different pools of VWF in stroke.

Approach and Results—

Using bone marrow transplantation, we generated chimeric Plt-VWF mice, Plt-VWF mice that lack ADAMTS13 in platelets and plasma (Plt-VWF/Adamts13−/−), and EC-VWF mice to determine relative contribution of different pools of VWF in stroke. In brain ischemia/reperfusion injury model, we found that infarct size and postischemic intracerebral thrombo-inflammation (fibrin(ogen) deposition, neutrophil infiltration, interleukin-1β, and tumor necrosis factor-α levels) within lesions were comparable between EC-VWF and wild-type mice. Infarct size and postischemic thrombo-inflammation were comparable between Plt-VWF and Plt-VWF/Adamts13−/− mice, but decreased compared with EC-VWF and wild-type mice (P<0.05) and increased compared with Vwf−/− mice (P<0.05). Susceptibility to FeCl3 injury–induced carotid artery thrombosis was comparable between wild-type and EC-VWF mice, whereas Plt-VWF and Plt-VWF/Adamts13−/− mice exhibited defective thrombosis. Although most of the injured vessels did not occlude, slope over time showed that thrombus growth rate was increased in both Plt-VWF and Plt-VWF/Adamts13−/− mice compared with Vwf−/− mice (P<0.05), but decreased compared with wild-type or EC-VWF mice.


Plt-VWF, either in presence or absence of ADAMTS13, partially contributes to VWF-dependent injury and postischemic thrombo-inflammation after stroke. EC-VWF is the major determinant that mediates VWF-dependent ischemic stroke by promoting postischemic thrombo-inflammation.

Related Topics

    loading  Loading Related Articles