Endothelial Cell–Derived Von Willebrand Factor, But Not Platelet-Derived, Promotes Atherosclerosis in Apolipoprotein E–Deficient Mice

    loading  Checking for direct PDF access through Ovid

Abstract

Objective—

VWF (von Willebrand factor) is synthesized by endothelial cells and megakaryocytes and is known to contribute to atherosclerosis. In vitro studies suggest that platelet-derived VWF (Plt-VWF) is biochemically and functionally different from endothelial cell–derived VWF (EC-VWF). We determined the role of different pools of VWF in the pathophysiology of atherosclerosis.

Approach and Results—

Using bone marrow transplantation, we generated chimeric Plt-VWF, EC-VWF, and Plt-VWF mice lacking a disintegrin and metalloprotease with thrombospondin type I repeats-13 in platelets and plasma on apolipoprotein E–deficient (Apoe−/−) background. Controls were chimeric Apoe−/− mice transplanted with bone marrow from Apoe−/− mice (wild type) and Vwf−/−Apoe−/− mice transplanted with bone marrow from Vwf−/−Apoe−/− mice (VWF-knock out). Susceptibility to atherosclerosis was evaluated in whole aortae and cross-sections of the aortic sinus in female mice fed a high-fat Western diet for 14 weeks. VWF-knock out, Plt-VWF, and Plt-VWF mice lacking a disintegrin and metalloprotease with thrombospondin type I repeats-13 exhibited reduced plaque size characterized by smaller necrotic cores, reduced neutrophil and monocytes/macrophages content, decreased MMP9 (matrix metalloproteinase), MMP2, and CX3CL1 (chemokine [C-X3-C motif] ligand 1)-positive area, and abundant interstitial collagen (P<0.05 versus wild-type or EC-VWF mice). Atherosclerotic lesion size and composition were comparable between wild-type or EC-VWF mice. Together these findings suggest that EC-VWF, but not Plt-VWF, promotes atherosclerosis exacerbation. Furthermore, intravital microscopy experiments revealed that EC-VWF, but not Plt-VWF, contributes to platelet and leukocyte adhesion under inflammatory conditions at the arterial shear rate.

Conclusions—

EC-VWF, but not Plt-VWF, contributes to VWF-dependent atherosclerosis by promoting platelet adhesion and vascular inflammation. Plt-VWF even in the absence of a disintegrin and metalloprotease with thrombospondin type I repeats-13, both in platelet and plasma, was not sufficient to promote atherosclerosis.

Related Topics

    loading  Loading Related Articles