LRP1 (Low-Density Lipoprotein Receptor–Related Protein 1) Regulates Smooth Muscle Contractility by Modulating Ca2+ Signaling and Expression of Cytoskeleton-Related Proteins


    loading  Checking for direct PDF access through Ovid

Abstract

Objective—Mutations affecting contractile-related proteins in the ECM (extracellular matrix), microfibrils, or vascular smooth muscle cells can predispose the aorta to aneurysms. We reported previously that the LRP1 (low-density lipoprotein receptor–related protein 1) maintains vessel wall integrity, and smLRP1−/− mice exhibited aortic dilatation. The current study focused on defining the mechanisms by which LRP1 regulates vessel wall function and integrity.Approach and Results—Isometric contraction assays demonstrated that vasoreactivity of LRP1-deficient aortic rings was significantly attenuated when stimulated with vasoconstrictors, including phenylephrine, thromboxane receptor agonist U-46619, increased potassium, and L-type Ca2+ channel ligand FPL-64176. Quantitative proteomics revealed proteins involved in actin polymerization and contraction were significantly downregulated in aortas of smLRP1−/− mice. However, studies with calyculin A indicated that although aortic muscle from smLRP1−/− mice can contract in response to calyculin A, a role for LRP1 in regulating the contractile machinery is not revealed. Furthermore, intracellular calcium imaging experiments identified defects in calcium release in response to a RyR (ryanodine receptor) agonist in smLRP1−/− aortic rings and cultured vascular smooth muscle cells.Conclusions—These results identify a critical role for LRP1 in modulating vascular smooth muscle cell contraction by regulating calcium signaling events that potentially protect against aneurysm development.

    loading  Loading Related Articles