Intubation Biomechanics: Laryngoscope Force and Cervical Spine Motion during Intubation with Macintosh and Airtraq Laryngoscopes


    loading  Checking for direct PDF access through Ovid

Abstract

Introduction:Laryngoscopy and endotracheal intubation in the presence of cervical spine instability may put patients at risk of cervical cord injury. Nevertheless, the biomechanics of intubation (cervical spine motion as a function of applied force) have not been characterized. This study characterized and compared the relationship between laryngoscope force and cervical spine motion using two laryngoscopes hypothesized to differ in force.Methods:Fourteen adults undergoing elective surgery were intubated twice (Macintosh, Airtraq). During each intubation, laryngoscope force, cervical spine motion, and glottic view were recorded. Force and motion were referenced to a preintubation baseline (stage 1) and were characterized at three stages: stage 2 (laryngoscope introduction); stage 3 (best glottic view); and stage 4 (endotracheal tube in trachea).Results:Maximal force and motion occurred at stage 3 and differed between the Macintosh and Airtraq: (1) force: 48.8 ± 15.8 versus 10.4 ± 2.8 N, respectively, P = 0.0001; (2) occiput-C5 extension: 29.5 ± 8.5 versus 19.1 ± 8.7 degrees, respectively, P = 0.0023. Between stages 2 and 3, the motion/force ratio differed between Macintosh and Airtraq: 0.5 ± 0.2 versus 2.0 ± 1.4 degrees/N, respectively; P = 0.0006.Discussion:The relationship between laryngoscope force and cervical spine motion is: (1) nonlinear and (2) differs between laryngoscopes. Differences between laryngoscopes in motion/force relationships are likely due to: (1) laryngoscope-specific cervical extension needed for intubation, (2) laryngoscope-specific airway displacement/deformation needed for intubation, and (3) cervical spine and airway tissue viscoelastic properties. Cervical spine motion during endotracheal intubation is not directly proportional to force. Low-force laryngoscopes cannot be assumed to result in proportionally low cervical spine motion.

    loading  Loading Related Articles