Complete Induction of Autophagy Is Essential for Cardioprotection in Sepsis

    loading  Checking for direct PDF access through Ovid


Objective:To investigate the entire process of autophagy in the left ventricle of septic mice, and the functional significance of autophagy by using pharmacological agents.Background:Myocardial dysfunction is a common feature in sepsis and contributes to an increased risk of developing multiple organ failure. Autophagy functions predominantly as a prosurvival pathway in the heart during cellular stress. A dynamic process of autophagy that involves the complete activation of autophagy from autophagosome formation to fusion with lysosomes has driven the development of new approaches to detecting autophagy.Methods:Male mice were subjected to cecal ligation and puncture (CLP) or sham operation. At 1 hour after CLP operation, mice received either rapamycin (induction of autophagy), bafilomycin A1 (inhibition of autophagosomal degradation), or vehicle.Results:The formation of autophagosomes was increased whereas the degradation of autophagosomes was decreased in the left ventricle at 24 hours after CLP. This was consistent with the morphologic finding that septic hearts revealed an increase in autophagosomes but few autolysosomes, indicating incompletion of the autophagic process. Rapamycin, which induced complete activation of autophagy, restored CLP-induced depressed cardiac performances. This cardioprotective effect was also seen in increased ATP levels, and decreased inflammatory responses. Bafiomycin A1, which resulted in incompletion of the autophagic process, did not show any above beneficial effects in CLP mice.Conclusions:Incompletion of the autophagic process may contribute to sepsis-induced cardiac dysfunction. Treatment with rapamycin may serve a cardioprotective role in sepsis, possibly through the effect of complete induction of autophagy.

    loading  Loading Related Articles