Evidence for Oxidative Activation of c-Myc–Dependent Nuclear Signaling in Human Coronary Smooth Muscle Cells and in Early Lesions of Watanabe Heritable Hyperlipidemic Rabbits: Protective Effects of Vitamin E

    loading  Checking for direct PDF access through Ovid


BackgroundOxidized LDL (oxLDL) promotes atherogenesis, and antioxidants reduce lesions in experimental models. OxLDL-mediated effects on c-Myc are poorly characterized, and those on c-Myc nuclear pathways are completely unknown. c-Myc stimulates smooth muscle cell (SMC) proliferation and could be involved in atherosclerosis. We investigated the early effects of oxLDL and α-tocopherol on c-Myc, its binding partner Max, and the carboxy-terminal domain–binding factors activator protein-2 and elongation 2 factor in human coronary SMCs. We also investigated whether 9-week treatment of Watanabe heritable hyperlipidemic (WHHL) rabbits with diet-enriched α-tocopherol reduces c-Myc expression and oxLDL in the left coronary artery.Methods and ResultsOxLDL enhanced c-Myc/Max expression and transcription by cotransfection assay and the nuclear activities of E2F and activator protein-2 by binding shift and supershift in coronary SMCs. α-Tocopherol significantly reduced these molecular events. Furthermore, α-tocopherol reduced early lesions, SMC density, and the immunohistochemical presence of c-Myc, which colocalized with oxLDL/foam cells in the coronaries of WHHL rabbits.ConclusionsWe provide the first evidence that oxLDL and α-tocopherol may influence c-Myc activation and several c-Myc–dependent signaling pathways in human coronary SMCs. The observation that in vivo, an antioxidant reduces both c-Myc and oxLDL in early coronary lesions of rabbits is consistent with, but does not prove, the hypothesis that c-Myc–dependent factors activated by oxidative processes contribute to atherogenesis and coronary heart disease.

    loading  Loading Related Articles