Cytokine Signals Are Sufficient for HIV-1 Infection of Resting Human T Lymphocytes


    loading  Checking for direct PDF access through Ovid

Abstract

SummaryLentiviral vectors have been advocated to be effective vehicles for the delivery and stable expression of genes in nondividing primary cells. However, certain cell types, such as resting T lymphocytes, are resistant to infection with HIV-1. Establishing parameters for stable gene delivery into primary human lymphocytes and approaches to overcome the resistance of resting T cells to HIV infection may permit potential gene therapy applications, genetic studies of primary cells in vitro, and a better understanding of the stages of the lentiviral life cycle. Here we demonstrate that an HIV-1-derived vector can be used for stable delivery of genes into activated human T cells as well as natural killer and dendritic cells. Remarkably, a sizeable fraction of resting T cells was stably transduced with the HIV-1 vector when cultured with the cytokine interleukin (IL)-2, IL-4, IL-7, or IL-15, or, at a lower level, with IL-6, in the absence of any other stimuli. Resting T cells stimulated with these cytokines could also be infected with replication-competent HIV-1. To test the utility of this system for performing structure-function analysis in primary T cells, we introduced wild-type as well as a mutant form of murine CD28 into human T cells and showed a requirement for the CD28 cytoplasmic domain in costimulatory signaling. The ability to stably express genes of interest in primary T cells will be a valuable tool for genetic and structure-function studies that previously have been limited to transformed cell lines. In addition, the finding that cytokine signals are sufficient to permit transduction of resting T cells with HIV may be relevant for understanding mechanism of HIV-1 transmission and pathogenesis.

    loading  Loading Related Articles