Passive versus Active Recovery during High-Intensity Intermittent Exercises


    loading  Checking for direct PDF access through Ovid

Abstract

DUPONT, G., W. MOALLA, C. GUINHOUYA, S. AHMAIDI, and S. BERTHOIN. Passive versus Active Recovery during High-Intensity Intermittent Exercises. Med. Sci. Sports Exerc., Vol. 36, No. 2, pp. 302–308, 2004.PurposeTo compare the effects of passive versus active recovery on muscle oxygenation and on the time to exhaustion for high-intensity intermittent exercises.MethodsTwelve male subjects performed a graded test and two intermittent exercises to exhaustion. The intermittent exercises (15 s) were alternated with recovery periods (15 s), which were either passive or active recovery at 40% of V̇O2max. Oxyhemoglobin was evaluated by near-infrared spectroscopy during the two intermittent exercises.ResultsTime to exhaustion for intermittent exercise alternated with passive recovery (962 ± 314 s) was significantly longer (P < 0.001) than with active recovery (427 ± 118 s). The mean metabolic power during intermittent exercise alternated with passive recovery (48.9 ± 4.9 mL·kg−1·min−1) was significantly lower (P < 0.001) than during intermittent exercise alternated with active recovery (52.6 ± 4.6 mL·kg−1·min−1). The mean rate of decrease in oxyhemoglobin during intermittent exercises alternated with passive recovery (2.9 ± 2.4%·s−1) was significantly slower (P < 0.001) than during intermittent exercises alternated with active recovery (7.8 ± 3.4%·s−1), and both were negatively correlated with the times to exhaustion (r = 0.67, P < 0.05 and r = 0.81, P < 0.05, respectively).ConclusionThe longer time to exhaustion for intermittent exercise alternated with passive recovery could be linked to lower metabolic power. As intermittent exercise alternated with passive recovery is characterized by a slower decline in oxyhemoglobin than during intermittent exercise alternated with active recovery at 40% of V̇O2max, it may also allow a higher reoxygenation of myoglobin and a higher phosphorylcreatine resynthesis, and thus contribute to a longer time to exhaustion.

    loading  Loading Related Articles