Inhibition of Glycogen Synthase Kinase Enhances Isoflurane-Induced Protection Against Myocardial Infarction During Early Reperfusion In Vivo

    loading  Checking for direct PDF access through Ovid

Abstract

Inhibition of glycogen synthase kinase (GSK)-β protects against ischemia-reperfusion injury. Brief exposure to isoflurane before and during early reperfusion after coronary artery occlusion also protects against infarction. Whether GSK-β mediates this action is unknown. We tested the hypothesis that GSK inhibition enhances isoflurane-induced postconditioning. Rabbits (n = 88; 6 to 7 per group) subjected to a 30-min coronary occlusion followed by 3 h reperfusion received saline, isoflurane (0.5 or 1.0 minimum alveolar concentration [MAC]) administered for 3 min before and 2 min after reperfusion, the selective GSK inhibitor SB216763 (SB21; 0.2 or 0.6 mg/kg), or 0.5 MAC isoflurane plus 0.2 mg/kg SB21. Other groups of rabbits pretreated with phosphatidylinositol-3 kinase (PI3K) inhibitor wortmannin (0.6 mg/kg), 70-kDa ribosomal protein s6 kinase (p70s6K) inhibitor rapamycin (0.25 mg/kg), or mitochondrial permeability transition pore (mPTP) opener atractyloside (5 mg/kg) received 0.6 mg/kg SB21 or 0.5 MAC isoflurane plus 0.2 mg/kg SB21. Additional groups received the mPTP inhibitor, cyclosporin A (5 mg/kg), plus 0.2 mg/kg SB21 with or without atractyloside pretreatment. Isoflurane (1.0 but not 0.5 MAC) and SB21 (0.6 but not 0.2 mg/kg) reduced (P < 0.05) infarct size (21% ± 5%, 44% ± 7%, 23% ± 4%, and 46% ± 2%, respectively, of left ventricular area at risk, mean± sd; triphenyltetrazolium staining) as compared with control (42% ± 6%). Isoflurane (0.5 MAC) plus 0.2 mg/kg SB21 and cyclosporin A plus 0.2 mg/kg SB21 produced similar degrees of protection (24% ± 4% and 27% ± 6%, respectively). Atractyloside but not wortmannin or rapamycin abolished protection produced by 0.6 mg/kg SB21 and 0.5 MAC isoflurane plus 0.2 mg/kg SB21. Thus, GSK inhibition enhances isoflurane-induced protection against infarction during early reperfusion via a mPTP-dependent mechanism.

Related Topics

    loading  Loading Related Articles