The Contractile Effects of Oxytocin, Ergonovine, and Carboprost and Their Combinations: An In Vitro Study on Human Myometrial Strips

    loading  Checking for direct PDF access through Ovid

Abstract

BACKGROUND:

The objective of this study was to compare the in vitro contractile effects of the combination of oxytocin (low dose and high dose) with either ergonovine or carboprost in myometrial strips from women undergoing cesarean delivery (CD), and to study the effect of oxytocin pretreatment on these contractions. We hypothesized that the use of ergonovine or carboprost in combination with oxytocin would improve contractility compared with oxytocin alone.

METHODS:

Myometrial samples obtained from women undergoing elective CD were pretreated in organ bath chambers with either oxytocin 10−5 M (experimental) or physiological salt solution (control) for 2 hours. They were then washed and subjected to dose-response testing with oxytocin, ergonovine, or carboprost (10−10 to 10−5 M), either alone or in combination with a fixed low-dose (10−10 M) (LDOx) or high-dose (10−6 M) (HDOx) oxytocin. The amplitude, frequency, area under the curve, and motility index (amplitude × frequency) of contractions during the dose-response period were analyzed with linear regression models, and compared among the groups. The primary outcome was the motility index across the study groups.

RESULTS:

One hundred sixty-nine experiments were done in samples obtained from 56 women. The mean square root of the motility index [standard error] (√g·contractions/10 min) of oxytocin was significantly higher in the control (3.40 [0.24]) versus experimental group (2.02 [0.15]) (P < 0.001). When all control groups were compared, the motility index of oxytocin (3.21 [0.25]) was higher than that of ergonovine (2.13 [0.30], P < 0.001 [multiple comparisons adjusted P value, P < 0.001]), carboprost (1.88 [0.10], P < 0.001 [P < 0.001]), ergonovine + LDOx (2.07 [0.15], P < 0.001 [P < 0.001]), and carboprost + LDOx (1.82 [0.15], P < 0.001 [P < 0.001]) and was not different than that of ergonovine + HDOx (3.39 [0.32], P = 0.68 [P = 0.99]) and carboprost + HDOx (2.68 [0.30], P = 0.20 [P = 0.60]). However, in oxytocin-pretreated groups, carboprost + LDOx (motility index: 2.53 [0.08], P = 0.001 [multiple comparisons adjusted P value, P = 0.002]) and ergonovine + HDOx (2.82 [0.15], P < 0.001 [P < 0.001]) exhibited significantly superior contractility response compared with oxytocin alone, while ergonovine + LDOx (2.47 [0.13], P = 0.01 [P = 0.08]) and carboprost + HDOx (2.51 [0.20], P = 0.05 [P = 0.24]) showed higher mean contractility response compared with oxytocin alone but failed to reach statistical significance in adjusted analyses.

CONCLUSIONS:

The attenuation of oxytocin-induced contractility in oxytocin-pretreated myometrial strips is in keeping with the previously established oxytocin-receptor desensitization phenomenon. Oxytocin is the most effective of the uterotonics tested if the myometrium is not preexposed to oxytocin. However, in the oxytocin-pretreated myometrium, a synergistic response is evident, and the combination of oxytocin with either ergonovine or carboprost produces superior response compared with oxytocin alone. Further in vivo studies in humans are necessary to determine whether these differences identified in vitro are clinically significant.

Related Topics

    loading  Loading Related Articles