The CNAP™ Finger Cuff for Noninvasive Beat-To-Beat Monitoring of Arterial Blood Pressure: An Evaluation in Intensive Care Unit Patients and a Comparison with 2 Intermittent Devices

    loading  Checking for direct PDF access through Ovid

Abstract

BACKGROUND:

Continuous and intermittent noninvasive measurements of arterial blood pressure (BP) have not been compared in the same population. In a large panel of intensive care unit patients, we assessed the agreement between CNAP™ (Continuous Noninvasive Arterial Pressure) finger cuff beat-to-beat monitoring of BP and reference intraarterial measurements. Two automated oscillometric brachial cuff devices were also tested: CNAP brachial cuff (used for CNAP finger cuff calibration) and an alternative device. The performance for detecting hypotension (intraarterial mean BP <65 mm Hg or systolic BP <90 mm Hg), response to therapy (therapy-induced increase in mean BP >10%), and hypertension (intraarterial systolic BP >140 mm Hg) was evaluated. We also assessed the between-calibration drift of CNAP finger cuff BP in specific situations: cardiovascular intervention or no intervention.

METHODS:

With each device, 3 pairs of noninvasive and intraarterial measurements were prospectively collected and analyzed according to current guidelines, the International Organization for Standardization (ISO) standard. The trending ability and drift of the CNAP finger cuff BP were assessed over a 15-minute observation period.

RESULTS:

In 182 patients, CNAP finger cuff and CNAP brachial cuff readings did not conform to ISO standard requirements (mean bias ± SD exceeding the maximum tolerated 5 ± 8 mm Hg), whereas the alternative automated brachial cuff succeeded for mean and diastolic BP. CNAP finger cuff trending ability was poor (concordance rate <70% over a 15-minute period) owing to a significant drift since calibration, especially if a cardiovascular intervention was performed (n = 75, −7.5 ± 10.2 mm Hg at the 14th minute, ie, before recalibration, versus −2.9 ± 7.9 mm Hg if no cardiovascular intervention occurred, n = 103, P = 0.0008). However, a similar and reliable performance was observed for the detection of hypotension with the CNAP finger cuff (within 4 minutes after calibration) and with the 2 automated brachial cuffs (area under the receiver operating characteristic curve ≥0.91, positive and negative likelihood ratios ≥5 and ≤0.20, respectively). The performance for the detection of response to therapy or of hypertension was slightly lower.

CONCLUSIONS:

In a large population of intensive care unit patients, CNAP did not fulfill the ISO criteria and exhibited a relevant between-calibration drift. However, CNAP measurements collected within 4 minutes after calibration were reliable for detecting hypotension, as were oscillometric devices, while providing beat-to-beat measurements. Interestingly, an alternative automated brachial cuff was more reliable than the native one, used for calibration. This information is important to clinicians using those devices and for further development of the CNAP technology.

Related Topics

    loading  Loading Related Articles