Regulatory Considerations for Physiological Closed-Loop Controlled Medical Devices Used for Automated Critical Care: Food and Drug Administration Workshop Discussion Topics

    loading  Checking for direct PDF access through Ovid


Part of the mission of the Center for Devices and Radiological Health (CDRH) at the US Food and Drug Administration is to facilitate medical device innovation. Therefore, CDRH plays an important role in helping its stakeholders such as manufacturers, health care professionals, patients, patient advocates, academia, and other government agencies navigate the regulatory landscape for medical devices. This is particularly important for innovative physiological closed-loop controlled (PCLC) devices used in critical care environments, such as intensive care units, emergency settings, and battlefield environments. CDRH’s current working definition of a PCLC medical device is a medical device that incorporates physiological sensor(s) for automatic manipulation of a physiological variable through actuation of therapy that is conventionally made by a clinician. These emerging devices enable automatic therapy delivery and may have the potential to revolutionize the standard of care by ensuring adequate and timely therapy delivery with improved performance in high workload and high-stress environments. For emergency response and military applications, automatic PCLC devices may play an important role in reducing cognitive overload, minimizing human error, and enhancing medical care during surge scenarios (ie, events that exceed the capability of the normal medical infrastructure). CDRH held an open public workshop on October 13 and 14, 2015 with the aim of fostering an open discussion on design, implementation, and evaluation considerations associated with PCLC devices used in critical care environments. CDRH is currently developing regulatory recommendations and guidelines that will facilitate innovation for PCLC devices. This article highlights the contents of the white paper that was central to the workshop and focuses on the ensuing discussions regarding the engineering, clinical, and human factors considerations.

Related Topics

    loading  Loading Related Articles